Twitter
RSS

Sunday, February 17, 2013

Name of Some Biological Control Agents for Pest Management

Name of Some Biological Control Agents for Pest Management

Predators

Lacewings are available from biocontrol dealers. Predators are mainly free-living species that directly consume a large number of prey during their whole lifetime. Ladybugs, and in particular their larvae which are active between May and July in the northern hemisphere, are voracious predators of aphids, and will also consume mites, scale insects and small caterpillars.

The larvae of many hoverfly species principally feed upon greenfly, one larva devouring up to fifty a day, or 1000 in its lifetime. They also eat fruit tree spider mites and small caterpillars. Adults feed on nectar and pollen, which they require for egg production.
Predatory Polistes wasp looking for bollworms or other caterpillars on a cotton plant

Dragonflies are important predators of mosquitoes, both in the water, where the dragonfly naiads eat mosquito larvae, and in the air, where adult dragonflies capture and eat adult mosquitoes. Community-wide mosquito control programs that spray adult mosquitoes also kill dragonflies, thus reducing an important biocontrol agent.

Phasmarhabditis hermaphrodita is a microscopic nematode that kills slugs, thereafter feeding and reproducing inside. The nematode is applied by watering onto moist soil, and gives protection for up to six weeks in optimum conditions.

Other useful garden predators include lacewings, pirate bugs, rove and ground beetles, aphid midge, centipedes, spiders, predatory mites, as well as larger fauna such as frogs, toads, lizards, hedgehogs, slow-worms and birds. Cats and rat terriers kill field mice, rats, June bugs, and birds. Dachshunds are bred specifically to fit inside tunnels underground to kill badgers.

More examples:

  • Phytoseiulus persimilis (against spider mites)
  • Amblyseius californicus (against spider mites)
  • Amblyseius cucumeris (against spider mites)
  • Typhlodromips swirskii (against spider mites, thrips, and white flies)
  • Feltiella acarisuga (against spider mites)
  • Stethorus punctillum (against spider mites)
  • Macrolophus caluginosus (against spider mites)

Parasitoid insects


Parasitoids lay their eggs on or in the body of an insect host, which is then used as a food for developing larvae. The host is ultimately killed. Most insect parasitoids are wasps or flies, and usually have a very narrow host range.

Four of the most important groups are:

Ichneumonid wasps: (5–10 mm). Prey mainly on caterpillars of butterflies and moths.
Braconid wasps: Tiny wasps (up to 5 mm) attack caterpillars and a wide range of other insects including greenfly. A common parasite of the cabbage white caterpillar- seen as clusters of sulphur yellow cocoons bursting from collapsed caterpillar skin.
Chalcid wasps: Among the smallest of insects (<3 mm). Parasitize eggs/larvae of greenfly, whitefly, cabbage caterpillars, scale insects and Strawberry Tortrix Moth (Acleris comariana).
Tachinid flies: Parasitize a wide range of insects including caterpillars, adult and larval beetles, true bugs, and others.

Examples of parasitoids:

Diagram illustrating the life cycles of Greenhouse whitefly and its parasitoid wasp Encarsia formosa.
Encarsia formosa A small predatory chalcid wasp which is a parasitoid of whitefly, a sap-feeding insect which can cause wilting and black sooty moulds. It is most effective when dealing with low level infestations, giving protection over a long period of time. The wasp lays its eggs in young whitefly 'scales', turning them black as the parasite larvae pupates.
Eretmocerus spp. (against white flies)
Aphidius colemani (against aphids)
Gonatocerus ashmeadi (Hymenoptera: Mymaridae) has been introduced to control the glassy-winged sharpshooter Homalodisca vitripennis (Hemipterae: Cicadellidae) in French Polynesia and has successfully controlled ~95% of the pest density.

Parasitoids are one of the most widely used biological control agents. Commercially there are two types of rearing systems: short-term daily output with high production of parasitoids per day, and long-term low daily output with a range in production of 4-1000million female parasitoids per week. Larger production facilities produce on a yearlong basis, whereas some facilities will produce only seasonally.

Rearing facilities are usually a significant distance from where the agents will be used in the field, and transporting the parasitoids from the point of production to the point of use can pose problems. Shipping conditions can be too hot, and even vibrations from planes or trucks can disrupt the parasitoids.[7]
Micro-organisms
Further information: biopesticide

Pathogenic micro-organisms include bacteria, fungi, and viruses. They kill or debilitate their host and are relatively host-specific. Various microbial insect diseases occur naturally, but may also be used as biological pesticides. When naturally occurring, these outbreaks are density-dependent in that they generally only occur as insect populations become denser.

Bacteria

Bacteria used for biological control infect insects via their digestive tracts, so insects with sucking mouth parts like aphids and scale insects are difficult to control with bacterial biological control. Bacillus thuringiensis is the most widely applied species of bacteria used for biological control, with at least four sub-species used to control Lepidopteran (moth, butterfly), Coleopteran (beetle) and Dipteran (true flies) insect pests. The bacteria is available in sachets of dried spores which are mixed with water and sprayed onto vulnerable plants such as brassicas and fruit trees.

Fungi

Fungi that cause disease in insects are known as entomopathogenic fungi, including at least fourteen species that attack aphids.  Beauveria bassiana is used to manage a wide variety of insect pests including: whiteflies, thrips, aphids and weevils. A remarkable additional feature of some fungi is their effect on plant fitness. Trichoderma species may enhance biomass production promoting root development, dissolving insoluble phosphate containing minerals.

Examples of entomopathogenic fungi:

Beauveria bassiana (against white flies, thrips, aphids and weevils)
Paecilomyces fumosoroseus (against white flies, thrips and aphids)
Metarhizium spp. (against beetles, locusts and grasshoppers, Hemiptera, spider mites and other pests)
Lecanicillium spp. (against white flies, thrips and aphids)
Cordyceps species (includes teleomorphs of the above genera: that infect a wide spectrum of arthropods)
Trichoderma species are used to manage certain plant pathogens. Trichoderma viride has been used against Dutch Elm disease, and to treat the spread of fungal and bacterial growth on tree wounds. It may also have potential as a means of combating silver leaf disease.

Viruses

The European Rabbit (Oryctolagus cuniculus) is seen as a major pest in Australia and New Zealand.
A viral biological control which can be introduced in order to control the overpopulation of European rabbit in Australia is the rabbit haemorrhagic disease virus that causes the rabbit haemorrhagic disease.

Combined use of parasitoids and pathogens


In cases of massive and severe infection of invasive pests, techniques of pest control are often used in combination. An example being, that of the emerald ash borer (Agrilus planipennis Fairmaire, family Buprestidae), an invasive beetle from China, which has destroyed tens of millions of ash trees in its introduced range in North America. As part of the campaign against the emerald ash borer (EAB), American scientists in conjunction with the Chinese Academy of Forestry searched since 2003 for its natural enemies in the wild leading to the discovery of several parasitoid wasps, namely Tetrastichus planipennisi, a gregarious larval endoparasitoid,Oobius agrili, a solitary, parthenogenic egg parasitoid, and Spathius agrili, a gregarious larval ectoparasitoid. These have been introduced and released into the United States of America as a possible biological control of the emerald ash borer. Initial results have shown promise with Tetrastichus planipennisi and it is now being released along with Beauveria bassiana, a fungal pathogen with known insecticidal properties.

Plants


The legume vine Mucuna pruriens is used in the countries of Benin and Vietnam as a biological control for problematic Imperata cylindrica grass. Mucuna pruriens is said not to be invasive outside its cultivated area. Desmodium uncinatum can be used in push-pull farming to stop the parasitic plant, Striga. Indirect control

Pests may be controlled by biological control agents that do not prey directly upon them. For example the Australian bush fly, Musca vetustissima, is a major nuisance pest in Australia, but native decomposers found in Australia are not adapted to feeding on cow dung, which is where bush flies breed. Therefore the Australian Dung Beetle Project (1965-1985,) led by Dr. George Bornemissza of the Commonwealth Scientific and Industrial Research Organisation, released forty-nine species of dung beetle, with the aim of reducing the amount of dung and therefore also breeding sites of the fly. 

No comments:

Post a Comment